
Modeling of Oxygen Transport and Cell Killing in Type-II Photodynamic
Therapy

Ioannis Gkigkitzis1,2, Yuanming Feng3,4, Chunmei Yang4, Jun Q. Lu1 and Xin-Hua Hu*1

1Department of Physics, East Carolina University, Greenville, NC
2Department of Mathematics, East Carolina University, Greenville, NC
3Department of Radiation Oncology, TJMUCH, Tianjin, China
4Department of Biomedical Engineering, Tianjin University, Tianjin, China

Received 12 January 2012, accepted 18 March 2012, DOI: 10.1111/j.1751-1097.2012.01145.x

ABSTRACT

Photodynamic therapy (PDT) provides an effective option for

treatment of tumors and other diseases in superficial tissues and

attracts attention for in vitro study with cells. In this study, we

present a significantly improved model of in vitro cell killing

through Type-II PDT for simulation of the molecular interac-

tions and cell killing in time domain in the presence of oxygen

transport within a spherical cell. The self-consistency of the

approach is examined by determination of conditions for

obtaining positive definitive solutions of molecular concentra-

tions. Decay constants of photosensitizers and unoxidized

receptors are extracted as the key indices of molecular kinetics

with different oxygen diffusion constants and permeability at the

cell membrane. By coupling the molecular kinetics to cell killing,

we develop a modeling method of PDT cytotoxicity caused by

singlet oxygen and obtain the cell survival ratio as a function of

light fluence or initial photosensitizer concentration with differ-

ent photon density or irradiance of incident light and other

parameters of oxygen transport. The results show that the

present model of Type-II PDT yields a powerful tool to

quantitate various events underlying PDT at the molecular and

cellular levels and to interpret experimental results of in vitro cell

studies.

INTRODUCTION

Photodynamic therapy (PDT) has been recognized as an

effective option for treatment of cancers and other diseases
(1,2). The therapeutic effects of PDT in vivo are realized
through different mechanisms, which include direct killing of

target cells, vascular shutdown and induction or modification
of immune response. Therefore, investigations of PDT under
in vivo conditions are critical to understand and improve
clinical applications. On the other hand, in vitro studies of the

very complex PDT processes with cultured cells have attracted
significant attentions for multiple reasons (3–5). First, detailed
study of PDT in vitro within a controlled cellular environment

is essential to analyze the multiple signaling pathways under-
lying the cell killing effect of PDT. Second, cell killing through

PDT yields a unique case study of system biology in which cell

repair and death in response to combined stimulations of
photosensitizer and light can be quantitatively investigated and
modeled. In response to treatment, cell death in a Type II PDT

process can be initiated by production of singlet oxygen and
other reactive oxygen species (ROS) with optically excited
photosensitizers in the presence of oxygen molecules (6). In

addition, oxygen functions as the essential molecules for
cellular metabolism and other biochemical processes. There-
fore, oxygen and associated transport play critical roles in the

survival and death of PDT treated cells. Thus, a systematic
study of oxygen transport in a single cell by taking into
account of various molecular interactions and pathways can
yield critical insights to understand the cytotoxicity and other

effects of PDT.
Previously, we established a numerical model (7) to study

the molecular interaction involved in Type-II PDT processes in

time domain based on a method of rate equations proposed by
Foster et al. (3,8,9). In that model, the concentrations of key
molecules in both ground and excited states were solved as

functions of illumination time with a group of coupled rate
equations. By defining two decay constants to characterize the
loss of ground-state photosensitizer and receptor oxidation, we
have investigated the dependence of photobleaching and

cytotoxicity on the initial concentrations of photosensitizer
and incident light irradiance at the molecular level. The
existing model, however, does not account for the oxygen

transport inside and outside of the cell and provides no direct
link to the observable cell survival curves. In this study, we
present a significantly improved PDT model, which allows

detailed examination of the roles played by oxygen and
associated transport in a spherical cell configuration (10).
Furthermore, this model includes a rate equation of cell killing

via two molecular ‘‘death effectors’’ of single oxygen molecules
or ROS and their receptors for calculation of cell survival ratio
as a function of incident light fluence or initial photosensitizer
concentrations. Numerical results are obtained with this model

to demonstrate its utility for relating the cell survival curves to
various parameters of molecular interactions that are critical
to understand cell killing by PDT. As a result, the present

model provides for the first time a powerful tool to quantitate
the effects of oxygen in terms of cell survival curves that can be
compared to the measured data.
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MODELING METHODS

Rate equation group. Agroupof rate equations are used toquantitate the
time evolution of the following molecule species in a Type-II PDT
process: photosensitizers in the singlet ground state S0; photosensitizers
in the singlet and triplet excited states S1 and T, respectively; oxygen
molecules in triplet ground and singlet excited states 3O2 and

1O2; and
unoxidized receptors R, which can be oxidized to induce cell killing (7).
Even though the singlet excited oxygenmolecules 1O2 may play a critical
role by themselves, it is well known that other ROS species are also
involved in the cytotoxicity of PDT with mitochondria as the possible
source and target sites (6). Consequently, the 1O2 molecules here should
be interpreted as the representatives of ROS molecules that include the
singlet oxygen. Similar interpretation should also be made to the
definition of receptors R, which symbolize the assembly of initiator and
effector molecules inducing apoptosis, necrosis and autophagy in cells
treated by PDT (11). With these guidelines in mind, we first employ six
rate equations to describe the time evolution of the key molecular
concentrations leading to the accumulation of oxidized receptors
involved in the cytotoxicity through a Type-II PDT mechanism. These
equations are given elsewhere to obtain a concentration vector of six
components from [S0] to [R] in the time domain

d½S0�
dt
¼ �kpb½1O2�½S0� � vqrpsa½S0� þ

g10
s1
½S1� þ

g30
s3
½T� þ as

s3
½T�½3O2�;

ð1Þ

d½S1�
dt
¼ � 1

s1
½S1� þ vqrpsa½S0�; ð2Þ
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dt
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s3
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s3
½T�½3O2� þ

g13
s1
½S1�; ð3Þ
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@t

¼ �as
s3
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; ð4Þ

d½1O2�
dt

¼ �kpb½S0�½1O2� � kcx½R�½1O2� �
go
so
½1O2�

þ as
s3
½T�½3O2� � ksc½C�i½

1O2�;
ð5Þ

d½R�
dt
¼ �kcx½1O2�½R� þU: ð6Þ

The definitions of coefficients and their values used in the above
equations have been detailed in (7) and are provided in the Appendix for
completeness. The initial conditions of Eqs. (1–6) at the beginning of
illumination (t = 0) are given by an initial concentration vector of ([S0]i,
0, 0, [3O2]i, 0, [R]i) and the spatial variationof the oxygen concentration is
limited to the interior of a cell, i.e. 0 £ r < r0, with r0 as the radius of the
spherical cell. The second termUon the right-hand side ofEq. (6) is set to
be a very small positive constant at 1(cm)3 s)1) for avoiding appearance
of negative concentrations in numerical calculations as to be discussed
later. It is verified that the small valuedUhas no effect on calculations of
decay constants and cell survival ratio.

For the six equations listed elsewhere, the first three and last two
remain essentially the same as presented in our previous model (7)
except the repair term U in Eq. (6). In these equations, we do not
consider the spatial dependence of molecular concentrations for two
reasons. First, the molecules of photosensitizers and receptors are
much larger and more massive than the small oxygen molecules and
therefore the associated diffusions take a much longer time to become
significant in PDT process. This argument should also apply to the
excited photosensitizers T acting as a substrate for transferring energy
from photons to oxygen molecules with a relaxation time s3. Second,
the highly active molecules of S1 and 1O2 have very fast relaxation
rates to ground states. Consequently, their respective relaxation times
of s1 and s0 were chosen as 10 and 30 (ns) in our previous study, which
are much smaller than s3 (=30 [ls]) and thus prevent the molecules
from diffusing into locations other than the immediate neighboring
sites (7). Next, we will consider Eq. (4), which contains a term on the
diffusion of the ground-state oxygen molecules 3O2.

Oxygen diffusion and boundary conditions. Diffusion of 3O2 in cells
has attracted research interests in consideration of cellular metabolism
and other biochemical processes. Quantitative modeling has been
pursued in a spherical configuration in which a spherical symmetry of
oxygen distribution or [3O2](r) = [3O2](r) was assumed to simplify
mathematical treatment. With this model one considers the rate of
oxygen uptake bymolecules in themetabolism and processes unrelated to
PDT using a nonlinear Michaelis–Menten term of two adjustable
parameters (12): Vm represents the maximum rate of oxygen uptake as
[3O2] fi ¥ while Km yields the value of [3O2] for the Michaelis–Menten
term to reach a half-maximum uptake rate. We adopt this spherical cell
configuration to study oxygen diffusion in a Type-II PDT process using
Eq. (4). To establish an appropriate boundary-value problem related to
oxygen diffusion, boundary conditions at the cell center (r = 0) and
membrane (r = r0; 12) are introduced in the following to complement the
Eq. (4)

@½3O2�
@r ¼ 0; if r ¼ 0

D
@½3O2 �
@r ¼Mf½3O2�0 � ½3O2�g; if r ¼ r0

(
ð7Þ

where M is the parameters of oxygen permeability and [3O2]¢ refers to
the outside concentration.

If [3O2]¢ distributes outside the cell according to a homogeneous
diffusion process with D¢ as the extracellular diffusion constant, one
can show that Eq. (7) can be further simplified to the following:

@½3O2 �
@r ¼ 0; if r ¼ 0

D @½3O2 �
@r ¼Mf1� Mr0

D0þMr0
gf½3O2�i � ½

3O2�g; if r ¼ r0

(
ð8Þ

where we assumed [3O2]¥ = [3O2]i as the oxygen concentration far
from the cell. In this study, the permeability M is used as one of the
adjustable parameters to account for the variation of topology of cell
membrane due to the presence of microvilli and ruffles. For example, it
has been suggested that ruffled cell membrane can reduce its perme-
ability to oxygen because of extended area using a 2D random walk
model (13). For results presented here, we vary the parameter M from
a ‘‘classical’’ value of 2 · 10)2 (cm s)1; 14) to 2 · 10)5 (cm s)1) to
allow a detailed study of oxygen permeability across the cell mem-
brane. Figure 1 illustrates schematically various molecular reactions
and processes involved in a Type-II PDT considered here with the
coefficients and parameters characterizing the interactions and oxygen
transport in a spherical cell.

Decay constants of photosensitizer and receptor concentrations. The
group of differential equations from (1–6) can be solved numerically in
time domains under the boundary conditions of Eq. (8) to obtain a
solution vector of six molecular concentrations. The effects of oxygen
diffusion within the cell and across the membrane on the solution vector
of concentrations are investigated with this model for quantitative
understanding of the molecular kinetics related to the Type-II PDT.We
use the partial differential equation (PDE) solver (pdepe) by MATLAB
(The MathWorks, Natick, MA) to obtain the solution vector as a
function of illumination time t from the start of illumination at t = 0 to
3000 (s). Two components of the solution vector, [S0] and [R], are of
particularly interest to our study whose concentration and time
dependences can be used to quantitate the phenomena of photobleach-
ing and cytotoxicity in a Type-II PDT process. Consequently we define
two decay constants of tS and tR for characterization of the initial
decrease of [S0] and [R], respectively, caused by photon absorption (7).
Utilization of tS and tR allows detailedmapping of these decay constants
on the grid of the two key parameters: photon density q proportional to
the incident light irradiance and the initial photosensitizer concentration
[S0]i for inducing cytotoxicity. Effects of other parameters are studied by
mapping the two decay constants at different values of the oxygen
diffusion constants D and D¢, the membrane permeability M and the
maximum rate of oxygen uptake Vm.

Cell killing model. The equation group from (1–6) can be solved to
characterize the main molecular interaction involved in Type-II PDT.
Although some of the molecular concentrations are measurable such as
[S0] and [3O2], experimental verification of these quantities can be
difficult, if not impossible and they relate indirectly to the ultimate
consequence of PDT for cell killing. It is thus highly desired to develop
a cell killing model that can link the molecular concentrations to the
cell survival ratio, which can bemeasured with an in vitro cell model.We
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mainly consider two forms of cytotoxicity related to PDT induced by
ROS. One is due to the accumulation of oxidized receptors for initiation
of apoptosis with the rate of cell killing linearly proportional to the
concentration of oxidized receptors (15). Another is described by a
nonlinear term similar to the Michaelis–Menten terms used in Eq. (4),
which represents the receptor-independent contributions to the rate of
cell killing as a result of ROS stress (16). This term becomes significant
as the concentration of 1O2 or ROS becomes large relative to Kc. The
nonlinear term therefore allows the inclusion of the coefficient Kc to
simulate the effect of cell repair. We include these two terms into the
following equation to quantitate the PDT cytotoxicity as:

dN

d
¼ �b0ð1�

½R�
½R�i
ÞN� Vc½1O2�

½1O2� þ Kc

ð9Þ

where N can be interpreted as either the cell survival ratio or proba-
bility of cell survival with the initial condition given by N(0) = 1, the
coefficients of b0 and Vc are parameters that can be adjusted to vary
the weights of the two terms and Kc is used for characterization of the
cell’s ability to resist or repair damage by ROS. The values of these
coefficients are given in the Appendix for results presented elsewhere.
The above equation can be solved simultaneously with equations of (1–
6) under the boundary condition of Eq. (8) to obtain the cell survival
ratio N as a function of incident light fluence F. The fluence F is
obtained from the illumination time t and the irradiance of incident
light or the photon density q as F � qt.

Positive definite test of the solution vector in time domain. Equations
(1–6) form a system of parabolic PDEs with the boundary condition
defined in Eq. (8). It is therefore of interest to inquire under what
conditions the equation group could produce a solution vector of
positive definite components to be consistent with their definitions. To
derive these conditions, we employ a strong maximum principle
recently proved for parabolic PDE (17). Each of Eqs. (1–3) and
Eqs. (5) and (6) in the group can be casted into a parabolic PDE form
like Eq. (4) if we add a Laplace term with a positive diffusion constant
of negligibly small value (=1 · 10)15 [cm2 s)1]). This allows us to use
Eq. (4) as an example for application of the strong maximum principle
by replacing [3O2] with a function f(r, t), which is assumed to be
continuous over the domain of (0 £ r < r0, 0 £ t). We first rearrange
Eq. (4) into the following form

@f

@t
�Dr2fþ ð Vm

fþ Km
þ as

s3
½T�Þf� go

so
½1O2� ¼ 0: ð10Þ

If go
so ½

1O2� � 0, then the above equation can be turned into an
inequality as

@f

@t
�Dr2fþ cf � 0: ð11Þ

where c(r, t) = Vm

fþKm
þ as

s3
½T�. The strong maximum principle applies to

the above inequality if D and c are locally bounded and c > 0, which
yields the following conclusion (17): f(r, t) = 0 for all t < t0 if f(r, t) =
0 at t = t0. According to this result a molecular concentration f(r, t)
remains positive once it becomes positive as long as the following two
conditions are satisfied: (1) other coupling molecular concentrations
(such as [1O2]) stay positive to ensure that Eq. (10) can be converted
into the inequality (11); and (2) the coefficient c is positive. A quick
examination shows that each of the Eqs. (1–6) can be converted into
the form of inequality (11) and both conditions can be satisfied if the
concentrations of the coupling molecules are initially positive or be-
come positive after t = 0. One should note that the strong maximum
principle applies only to the open domain of the spatial variable r
(0 £ r < r0; 17). At the boundary of spatial domain r = r0, a molec-
ular concentration is not prohibited to become negative.

RESULTS AND DISCUSSION

Time-domain results during light illumination for the molecular

concentrations

We solve the boundary-value problems of molecular concen-
trations defined by the group of Eqs. (1–6) under the boundary
condition of Eq. (8) in the time domain from t = 0 to 3000 (s)

with 1000 steps on a logarithmic scale to reduce numerical
errors. The spatial domain between the cell center at r = 0 to
the membrane boundary at r0 = 5 (lm) is divided into a linear

mesh of either 10- or 40-step. Figure 2 presents the time
dependence of six normalized molecular concentrations calcu-
lated with the 40-step spatial mesh with the oxygen diffusion

shut off by using negligible diffusion constants of D and D¢.
The concentrations are plotted against the illumination time t
in two groups: the ground-state molecules of [S0], [

3O2] and [R]

and the excited ones of [S1], [T] and [1O2]. Three intracellular
locations are chosen to exhibit the spatial variation of
concentrations. The lack of oxygen diffusion requires the use
of high initial oxygen concentration at [3O2]i = 5.0 · 1017

(cm)3) to observe significant decay of [S0] and [R] for t £ 3000
(s). It can be seen easily from the result presented in Fig. 2 that
the lack of oxygen leads to progressively severe hypoxia for

locations away from the cell boundary at r = r0. This in turn
affects the production of singlet oxygen so that the maximum
values of [1O2] decrease from 85.2% at r = 0.975r0 to 24.9%

at r = 0 in comparison to the maximum [1O2] at the boundary
of r = r0. Similarly, the decrease of the unoxidized receptor
concentration [R] becomes less steep as one moves toward the
cell center at r = 0. It can also be seen that the changes of

[1O2] among the three locations for the time period from 100 to
1000 (s) show different variations. The two intracellular
locations as shown in Fig. 2(b) and (d) show initial reductions

of [1O2] followed by increases, whereas near the cell boundary
in Fig. 2(f) [1O2] increases are rapidly followed by a drop.
From the time dependences of [3O2], [S0] and [R] and Eq. (5),

one can observe that the intracellular [1O2] is dominated by the
changes in [3O2] for poor transport, whereas the variation at

S0

S1: τ1

T: τ3
1O2: τ0

3O2

R: receptor  

S0: photobleaching 

σpsa

cρ
η10 η30

αs

η0

3O2

D: intracellular diffusion constant 

C: scavenger  

D′: extracellular diffusion constant 

S0

η13

M 

Figure 1. A schematic diagram to illustrate the molecular interaction
and diffusion in a spherical cell model.
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the boundary is due to consumption of single oxygen that

includes photobleaching. By raising the oxygen diffusion
constants toward 10)5 to 10)6 (cm2 s1), the intracellular
heterogeneity of oxygen distribution starts to disappear as

confirmed by the results calculated at different locations (not
shown here). We point out that all of the concentration values
shown in Fig. 2 and other similar results remain positive, as

expected based on the strong maximum principle.
We have calculated the molecular concentrations at the

boundary of r = r0 obtained with different spatial meshes of
40- and 10-step to increase simulation speed. The values of

[R] indeed become negative at the cell boundary for [R] at
t � 500 (s) for both spatial meshes. By increasing the spatial
mesh density or the step number from 10 to 40, the number

of negative [R] values; however, can be reduced from 20 to 7
among the 1000 data points in the time domain. In all cases
the magnitude of negative [R] values are less than 10)3 of its

initial value. These results (not shown) suggest that the
negative [R] calculated from the boundary-value problem
defined here can be attributed to the numerical rounding
errors. Furthermore, the appearance of small negative values

of [R] does not affect our calculation of the decay constant

and use of 10-step mesh can significantly reduce computation

time with little reduction in accuracy. Consequently, we
adopt the 10-step mesh for the calculation of decay constants
presented elsewhere.

To illustrate the effect of diffusion, we show in Fig. 3 the
time-domain data with diffusion constants typically used in
previous studies of oxygen diffusion (14, 18). For these high

values of D and D¢, sufficient oxygen is supplied through
diffusion so the time evolution of the concentration vector is
nearly independent of spatial location. Consequently, Fig. 3
presents only the results calculated at the middle location of

the spherical cell. Because of the efficient diffusion, the
influence of initial oxygen concentration [3O2]i is much
reduced. In the previous study, we proved that the time

evolution and decay constants of [S0] and [R] are very sensitive
to the values of [3O2]i without consideration of oxygen
diffusion, as shown by Figs. 4 and 5 in (7). Those data are

significantly different from the results presented in Fig. 3 in
which a large difference in [3O2]i leads to similar time evolution
of molecular concentrations. Nevertheless, [3O2]i can affect the
levels of [1O2] and subsequently the cell survival ratio as

described by Eq. (9).
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Figure 2. Time dependence of the solution vector at three intracellular locations using a 40-step spatial mesh and illumination starting at t = 0: (a),
(c) and (e): concentrations of ground-state molecules normalized by their initial values; (b), (d) and (f): concentrations of excited molecules
normalized by their maximum values on the spatial mesh. The values of the parameters are given by: q = 1 · 106 (cm)3), [S0]i = 5.00 · 1011

(cm)3), D = 8.00 · 10)12 (cm2 s)1), D¢ = 2.00 · 10)12 (cm2 s)1), M = 2.00 · 10)2 (cm s)1), [3O2]i = 5.06 · 1017 (cm)3), Vm = 0. The values of
other coefficients are given in the Appendix and the red lines indicate the thresholds for the decay constants.
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Mapping of decay constants on the mesh of [S0]i and q

As can be seen from the results in Figs. 2 and 3, the time
evolutions of photosensitizer concentration [S0] and unoxi-
dized receptor concentration [R] are often dominated by steep

reduction with increasing time of illumination. This prompts
us to define two decay constants of tS and tR to characterize
efficiently the two key processes in the Type-II PDT at the

molecular level: photobleaching related to [S0] and cytotoxicity
related to [R]. The group of Eqs. (1–6) is solved in time domain
to obtain tS and tR as the times for [S0] and [R] to be reduced to
1% of their initial values at various values of the initial

photosensitizer concentration [S0]i and photon density q. The
time-domain calculations and extraction of tS and tR are iterated

on a 20 · 20 semi-log mesh of [S0]i and qwith [S0]i ranging from

2.0 · 1012 to 1.0 · 1015 (cm)3) and q ranging from 1.0 · 105 to
2.0 · 107 (cm)3). The maximum values of the chosen ranges
correspond respectively to about 5 (lg mL)1) for Photofrin�

used as photosensitizer andabout 80 (mW cm)2) for the incident
light irradiance as it relates to q (7). Different values of the
oxygen diffusion constants, permeability and strength of the

Michaelis–Menten term parameters are employed for the time-
domain calculations carried out at two locations of cell center
(r = 0) and boundary (r = r0). As a reference, Fig. 4 presents
the results of decay constants obtained with D = 8.0 · 10)6

(cm2 s)1),D¢ = 2.0 · 10)5 (cm2 s)1),M = 2.0 · 10)2 (cm s)1)
and Vm = 2.9 · 1018 (cm)3 s)1) based on previous reports (14)
with a low-initial oxygen concentration of [3O2]i = 7.0 · 1016
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Figure 3. Time dependence of the solution vector at the middle of the cell (r = r0 ⁄ 2) using the 40-step mesh and D = 8.00 · 10)6 (cm2 s)1) and
D¢ = 2.00 · 10)5 (cm2 s)1) for different initial oxygen concentration: (a) and (b): [3O2]i = 5.0 · 1017 (cm)3); (c) and (d): [3O2]i = 7.0 · 1016

(cm)3). All other coefficients are of the same values as those in Fig. 2.
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Figure 4. The decay constants of (a) tS and (b) tR versus the initial photosensitizer concentration [S0]i and photon density q at the cell center
(r = 0). The values of parameters are given by D = 8 · 10)6 (cm2 s)1), D¢ = 2 · 10)5 (cm2 s)1), M = 2.00 · 10)2 (cm s)1), [3O2]i = 7.00 · 1016

and Vm = 2.9 · 1018 (cm)3 s)1) with all other coefficients given in the Appendix.
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(cm)3). As tS and tR exhibit similar dependences on [S0]i and q
among all three cell locations, only those at the cell center of
r = 0 are presented in Fig. 4. In contrast, the mapping of decay
constants are presented in Figs. 5 and 6 at both cell center and

boundary with different values of D, D¢, [3O2]i andM.
The results presented in Figs. 4–6 demonstrate the utility of

the modeling tool developed here, which makes it possible to

quantitatively investigate and compare the different effects on
the molecular aspects of PDT by variation of parameters
related to the supply and consumption of oxygen. We examine

the mapping results without the presence of additional oxygen
consumption described by the Michaelis–Menten term by
setting Vm = 0 and find no significant changes from the results

in Fig. 4. It appears that the oxygen consumption via
metabolism has limited effect on the decay of [S0] and [R] in
PDT for the Vm used and causes no significant differences
among the decay constants calculated at different cellular

locations. We also observe that for the ranges of [S0]i and q
chosen the decay constants are of much higher sensitivity to
[S0]i than that to q, which indicates sufficient supplies of

photons and oxygen. With the Michaelis–Menten term, we
further examine the effect of oxygen diffusion by reduction of
the diffusion constants by 10-fold and the permeability by

1000-fold. These variations lead to observable changes of the
decay constants at different cell locations as shown in Figs. 5
and 6. It is interesting to note that the weakened oxygen

transport can cause faster photobleaching, but slower oxidi-
zation of the receptors R at the cell center than those at the
boundary as the photon density or incident light irradiance is
increased.

The cell survival curves

Accurate modeling of cell killing by PDT remains a challeng-
ing task because of the complexity of the process. As our first

effort toward a full solution, the group of Eqs. (1–6) and (9)
are solved under the boundary conditions described by Eq. (8)
to obtain the cell survival ratio or probability N as a function

of illuminating time t. The solution is then converted into a
function of incident light fluence, N(F), by converting t into
light fluence as F = 4 · 10)9qt in the unit of (J cm)2) with q
and t taking the unit of (cm)3) and (s), respectively (7). After
detailed analysis of the results calculated with different
coefficients used in Eq. (9), we chose the values of b0, Vc and
Kc as given in the Appendix to obtain numerical results that

are comparable to the measured data published by other
researchers (3–5). Figure 7 presents typical results of cell
survival curves obtained with b0 = 1.0 · 10)2 (s)1) and

different values of q, [S0]i, [
3O2]i, D, D¢ and M. Each set of

curves consists of triplicate lines calculated at three spatial
locations of cell center, middle and boundary with each

assumed to be the targeted sites of PDT cytotoxicity. The cell
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Figure 5. The decay constants of tS and tR versus the initial photosensitizer concentration [S0]i and photon density q at the cell center (r = 0) for (a)
and (b); at the cell boundary (r = r0) for (c) and (d). The values of other parameters and coefficients are the same as those in Fig. 4 except the
following: D = 8.0 · 10)7 (cm2 s) and D¢ = 2.0 · 10)6 (cm2 s)1).
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survival curves presented in Fig. 7 can be divided into two
parts that relate separately to the two terms on the right-hand
side of Eq. (9). The first term is linearly proportional to [R] and
determines the slope of the initial exponential decrease of N for

small F. As F rises, the second term related to [1O2] concen-
tration or ROS stress starts to contribute significantly to the
killing rate and causes an accelerated drop of the survival curve.

From Fig. 7(a) to (d), we show in each diagram three sets of
curves calculated at different photon density values with
different parameters of initial oxygen concentration and

diffusion constants. It is clear from these results that increasing
photon density leads to increasing survival ratio at the same
fluence, which is widely known in the cell study of PDT as a

result of poor oxygen supply for illumination at high irradi-
ance (3–5). The effect of poor oxygen supply or hypoxia can be
further seen by comparing Fig. 7(b) to (a) where [3O2]i is
reduced by a factor of 100 to yield significant enhancement of

cell survival. The oxygen diffusion constants and permeability
also influence cell survival as demonstrated in Fig. 7(c) and (d)
in which D, D¢ and M are reduced. These results show higher

cell survival ratios correlate to weakened oxygen diffusion and
variation of cell killing among cells with different target site
locations due to spatial heterogeneity in oxygen distribution.

Finally, Fig. 7(e) and (f) present the modeling results using
different initial photosensitizer concentrations and diffusion
constants. Fig. 7(a) reveals that increasing [S0]i leads to

reduced cell survival as expected. A 142-fold increase in the
supply of [S0]i is not accompanied by a similarly enhanced cell
killing as demonstrated by the relatively small difference
between the two sets of curves labeled with [S0]i1 and [S0]i2 in

Fig. 7(e). The reduced oxygen diffusion in Fig. 7(f) exhibits
marked difference among the triplicate lines obtained at
different cell locations, especially for the low value of [S0]i at

[S0]i3, which indicates a strong competition for oxygen between
the cytotoxicity of PDT and unrelated metabolism processes
represented by the Michaelis–Menten term in Eq. (4).

To further demonstrate the utility of the PDT model
presented here, we show in Fig. 8 a comparison of our
numerical results with the experimental data reported by Qin

et al., which were obtained with lymphoma cells treated by
Photofrin�-PDT (5). The laser irradiance at the wavelength of
635 nm was varied to adjust fluence with a fixed illumination
time of 30 (s). Fig. 8 replots the cell survival data measured by

the clonogenic assay method as presented in fig. 3B of (5). We
carry out time domain calculations with 0 < t £ 30 (s) at three
cell locations and plot N (t = 30 s) versus [S0]i as two sets of

survival curves in Fig. 8. The two different values of photon
density q used for the numerical results are based on the
fluence values of F = 75 and 300 (mJ cm)2) as reported in (5).

As can be seen from Fig. 8, the present PDT model agrees
reasonably well with the measured cell survival data for the
case of high fluence at F = 300 (mJ cm)2) by adjusting the
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Figure 6. The decay constants of tS and tR versus the initial photosensitizer concentration [S0]i and photon density q at the cell center (r = 0) for (a)
and (b); at the cell boundary (r = r0) for (c) and (d). The values of other parameters and coefficients are the same as those in Fig. 5 except the
following: M = 2.00 · 10)5 (cm s)1).
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values of [3O2]i and b0 from those used in Fig. 8(a). For the
lower fluence case the model overestimates the cell killing,

which could be attributed to the use of homogeneous and
spherical cell configuration and ⁄ or the lack of sufficient
account of cell repair mechanisms. Despite this deficiency,

one can still see that the present model provides an efficient
and powerful tool to quantitate the dependence of cell survival
ratios on various parameters of light, photosensitizer and
oxygen for in vitro cell studies by Type-II PDT.

CONCLUSION

In this report, we presents a significantly improved model of
Type-II PDT by including oxygen transport and a quantitative
description of cell killing using a spherical cell configuration
over the previous efforts by other researchers (7–9) and us. A

group of differential equations with appropriate boundary
conditions is developed to simulate the time evolution of key
molecule concentrations and oxygen transport as a coupled

system. This allows us to extract the decay constants of
photosensitizer S0 and oxidized receptors R to quantitate the
photobleaching and cytotoxicity related PDT within the ranges

of experimentally controllable parameters of [S0]i and q with
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different oxygen and transport parameters. The consistency of
the equation group is examined by determination of the
conditions for obtaining nonnegative concentrations. In addi-
tion, the present model includes a cell killing equation in which

the excited singlet oxygen is used as the representative
molecules of ROS and linked to the cell killing rates through
two different pathways. Using this model one can calculate the

cell survival curves from the concentrations of unoxidized
receptors [R] and the singlet oxygen molecules [1O2] represent-
ing the ROS stress. More important, the modeling results can

be compared directly to the experimental results based on the
measurement of oxygen or singlet oxygen concentrations and
cell survival ratios or used for design of different in vitro

studies of PDT. Thus, the new model has the capacity to be
used as a platform to study in vitro the complex molecular
interactions leading to cell killing by Type-II PDT in the
presentation of oxygen transport. Further improvement of this

model for detailed analysis of cell killing through PDT can be
achieved by considering the molecular pathways underlying
cell death and repair and heterogeneous distribution of the

target sites in the cell.
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APPENDIX

The following coefficients are used to solve the differential
equations, their sources were given in table 1 of reference (7)

unless noted otherwise.
Light speed in tissue: v = 2.17 · 1010 (cm s)1);
Cross-section of light absorption of cells containing S0:

rpsa = 5.0 · 10)13 (cm2);
Relaxation time of S1 to S0: s1 = 10 ns;
Relaxation time of T to S0: s3 = 30 ls;
Relaxation time of 1O2 to

3O2: s0 = 30 ns;

Quantum yield of S1 transition to S0: g10 = 0.20;
Quantum yield of S1 intersystem crossing to T: g13 = 0.80;
Quantum yield of T transition to S0: g30 = 0.30;

Efficiency factor for energy transfer from T to 3O2:
as = 1 · 10)17 (cm3)

Quantum yield of 1O2 transition to 3O2: g0 = 0.30;

Photobleaching rate: kpb = 2.0 · 10)10 (cm3s)1);
Cytotoxicity rate: kcx = 2.0 · 10)9 (cm3s)1);
Scavenging rate: ksc = 1.0 · 10)9 (cm3s)1);

Initial concentration of oxygen scavengers: [C]i = 1.0 · 103

(cm)3);
Michaelis constant for oxygen uptake: Km = 1.5 · 1017

(cm)3; 19);

Initial concentration of unoxdized receptors: [R]i = 5.0 ·
1017 (cm)3);

Rate coefficient of cell killing by oxidized receptors: b0 =

1.0 · 10)2 (s)1) or 8.0 · 10)2 (s)1);
Maximum rate of cell killing by single oxygen: Vc =

4.0 · 10)3 (cm)3s)1);

Michaelis constant for singlet oxygen uptake in cell killing:
Kc = 2.0 · 109 (cm)3).

In addition to the above coefficients, a parameters of
photon density q (cm)3) is employed in Eq. (1) to represent the

incident light flux as vq over the illuminated cells and can be
related to the fluence F as F = 4 · 10)9qt.
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